Journal of Organometallic Chemistry, 180 (1979) 177–186 © Elsevier Sequoia S.A., Lausanne --- Printed in The Netherlands

VANADIUM, NIOBIUM AND TANTALUM ANNUAL SURVEY COVERING THE YEAR 1978

JAY A. LABINGER

Department of Chemistry, University of Notre Dame Notre Dame, IN 46556 (USA)

This survey is organized by ligand type, with complexes containing more than one class of ligand listed according to the feature of primary interest. The abbreviations Cp (for n^5 -cyclopentadienyl) and Cp' (for any ring-substituted cyclopentadienyl group) are used throughout.

CARBONYL AND DINITROGEN COMPLEXES

Magnetic circular dichroism studies on V(CO)₆ support a substantial Jahn-Teller distortion from O_h geometry (1), in agreement with previous spectroscopic studies. $V(CO)_6$ reacts with $S_2O_6F_2$ to give a CO-free product, $VO(SO_3F)_3$ (2). Photosubstitution of $V(CO)_6$ and $CpV(CO)_4$ with group V ligands ER_3 (E = As, Sb, Bi) gives V(CO)₅(ER₃) and CpV(CO)₃(ER₃) respectively; disubstituted CpV(CO)₂(BiEt₃)₂ was also obtained (3). With bidentate ligands LL, similar reactions afford $[(V(CO)_5)_2(\mu-LL)]^{2-}$, $V(CO)_4(LL)$, $[(V(CO)_4)_2(\mu-LL)_2]^2$, and $CpV(CO)_2(LL)$, where LL variously = $Ph_2E(CH_2)_2E'Ph_2$ (E, E' = P, As) or $\underline{o}-C_6H_4(ASMe_2)_2$ (4). IR and ⁵¹V NMR spectra for all complexes were reported. Chelate complexes $V(CO)_4(Ph_2P(CH_2)_pPh_2)$ (n = 1-4) are converted to the corresponding hydrides HV(CO) $_{A}L_{2}$ when passed through a silica gel column; ¹H NMR shows equal coupling to both P nuclei (5). Crystal structures have been determined for CpV(CO)₂(Ph₂P(CH₂)₂PPh₂) (6) and $(V(CO)_4)_2(\mu-PMe_2)_2$ (7). The latter has a V-V bond distances of 2.73 Å, considerably shorter than Cr and Mn analogs and consistent with a V=V double bond required to satisfy the 18 electron rule. The compound is blue, with the strong absorption at 596 nm assigned to a transition involving the metal-metal bond.

The chemistry of the hydridocarbonyl anion CpV(CO)₃H⁻ is the subject of both a communication (8) and a subsequent full paper (9). The anion is prepared by reducing CpV(CO)₄ with sodium followed by

protonation by water; IR studies indicate cation-dependent ion pairing in solution. Reaction with alkyl or acyl halides results in hydrogenolysis to alkane or aldehyde, plus a mixture of organometallics: $CpV(CO)_4$, $CpV(CO)_3X^-$ and $[(CpV(CO)_3)_2H]^-$; the latter two new compounds were prepared independently by irradiating $CpV(CO)_4$ with X⁻ and $CpV(CO)_3H^-$ respectively. Several lines of evidence indicate the alkyl halide reactions follow a radical chain path, analogous to the mechanism of alkyl halide reduction by R_3SnH ; a competing non-radical path may also be operative for cyclopropylcarbinyl halides. Also prepared were $CpV(CO)_2BH_4^-$ (from $CpV(CO)_4^+$ BH_4^- or $CpV(CO)_3H^- + BH_3$) and $CpV(CO)_3Me^-$.

Reduction of TaCl₂(dmpe)₂ (dmpe = Me₂P(CH₂)₂PMe₂) with Vitride (NaH₂Al(OCH₂CH₂OCH₃)₂) under CO gives previously reported TaCl(CO)₂-(dmpe)₂; in the absence of CO, the H-bridged aluminate [Ta(H₂Al(OR)₂)(dmpe)₂]₂ was obtained and a crystal structure reported (10). Variable temperature NMR studies on a group of TaX(CO)₂(LL)₂ complexes support a mechanism for fluxional behavior involving polytopal rearrangement rather than reversible dissociation of one end of a chelating ligand (11). The analogous niobium complex, NbCl(CO)₂(dmpe)₂, was prepared by Mg reduction of NbCl₄(dmpe)₂ under low CO pressure; also synthesized were CpNbCl₂(CO)L₂ (L = PMe₃, PEt₃) (12).

A full paper on the crystal structure of $\text{Cp}_2\text{V}_2(\text{CO})_5$ has appeared; this molecule contains two highly asymmetric semibridging carbonyls $(\text{V}_1-\text{C}=1.93; \text{V}_2-\text{C}=2.42 \text{ Å})$ and a V-V distance of 2.46 Å. Based on IR considerations, the monosubstitution product $\text{Cp}_2\text{V}_2(\text{CO})_4(\text{PPh}_3)$ is believed to have the structure $\text{CpLV}_1(\text{CO})_2\text{V}_2(\text{CO})_2\text{Cp}$. The IR peaks assigned to the semibridging CO's in the parent (1832, 1871 cm⁻¹) fall in between the ranges expected for terminal and normal bridging carbonyls (13).

In attempting to generate potential chiral vanadium centers, it was found that Cp_2VL (L = CO, RNC) both undergo reversible (by cyclic voltammetry) 1-electron reduction at -2.32 and -2.17 V respectively. However, bulk electrolysis gave decomposition to $Cp^$ and metallic vanadium; under CO, products characteristic of reduction of $CpV(CO)_4$ (vide supra) could be trapped (14). A new route to $Cp_2NbH(CO)$ involves treatment of $Cp_2Nb(BH_4)$ with Et_3N under CO; the hydride can be protonated to give $Cp_2NbH_2(CO)^+$ (stable only below -30°) which goes on to $Cp_2NbCl(CO)$ (from HCl) or $Cp_2Nb(CO)$ (THF)⁺ (from HBF₄(THF)). The latter can be carbonylated to $Cp_2Nb(CO)_2^+$ at 80°/200 atm (15). $Cp_2NbCl(CO)$ was also prepared by reducing Cp_2NbCl_2 with sodium amalgam under CO; at higher pressures, CpNb(CO)₄ and a new product, $Cp_3Nb(CO)$ are favored; the NMR of the latter suggests two η^5 -Cp rings and one η^1 ; thus it is analogous to $Cp_3NbMe(CO)$, which was obtained from $Cp_3NbCl(CO)$ plus MeLi (16).

The first example of CO reduction involving this group has been reported: heating $Cp_2NbH(CO)$ under H_2 affords 5-10% (based on Nb) CH_4 , shown by ¹³CO labelling to come from reduction of coordinated CO (small amounts of higher alkanes do not incorporate label and hence presumably arise from Cp-ring degradation). Combinations of group V hydrides and later transition metal carbonyls are more reactive; Cp_2NbH_3 reacts with Fe(CO)₅ at room temperature, <u>via</u> a formyl-type intermediate, to give the H-bridged, heterobimetallic complex $Cp_2(CO)$ (Nb) (µ-H)Fe(CO)₄ characterized by crystallographic means (17).

The vanadium(IV) complex V(3,5-di-t-butylcatecholate)₂ forms a reversible CO adduct based on changes observed in its electronic spectrum (18). A brief review of MX_n -Mg systems for N₂ reduction includes studies on VCl₄ (19).

ALKYL, ARYL AND ALKYLIDENE COMPLEXES

A series of benzylvanadium complexes have been prepared from VCl₂ (20) or V(acac)₂ (21) and main-group organometallics RLi, RMgCl, $R_{2}Mg$ and $R_{3}Al$ (R = benzyl); in all cases the resulting $R_{2}VCl$ or RV(acac), groups were obtained only complexed with the main group metal. Reaction of (Me₃Si)₂CHLi with VCl₃(NMe₃)₂ gives V(CH(SiMe₃)₂)₃; the Nb and Ta analogs could not be isolated in crystalline form (22). V(1-camphenyl) was found to act as a photocatalyst for olefin polymerization (23). The crystal structure of V(mesityl)₄ shows a distorted tetrahedral geometry with an average V-C distance of 2.08 \mathtt{A}_{i} the magnetic susceptibility and electronic spectrum are also reported (24). Reaction of NbCl₅ with C₆F₅Li gives a compound of uncertain composition, Nb(C_6F_5) Cl_{5-x}, where x is between 2 and 3 (by analysis); ¹⁹F NMR shows only one C_6F_5 environment, suggesting possible fast intermolecular exchange in a mixture. Adducts with P and As ligands were examined; the Ta analog was also studied (25). A "Reformatsky-like" alkyl compound was prepared by the reaction of Ph3SnCH2CONEt2 with TaCl5; IR and NMR studies on the resulting Ta(CH_CONEt2) 3C12 suggest the presence of Ta-C bonding rather than bonding through oxygen (26).

The photoelectron spectrum of $TaMe_5$ has been examined, along with a number of other transition metal alkyls (27). A kinetic study on the decomposition of $Ta(CH_2Ph)_5$ shows clean first-order behavior, with no evidence for any participation by free radicals.

A mechanism involving intramolecular α -hydrogen abstraction was proposed (28).

As noted last year, Cp_2VR_2 complexes are not stable except for R = Me; the ESR spectra (on <u>in situ</u> preparations) for R = Et and Me_3SiCH_2 were determined for comparison to studies on Ziegler-type systems (29). Cp_2VMe_2 reacts with 1 mol HCl at -60° to give CH_4 and Cp_2VMeCl ; the latter decomposes at 90° to CH_4 and $(Cp,Cp')_2VCl$ (30). Reaction of Cp_2NbCl_2 with α -lithiothiophene gives $Cp_2Nb(C_4H_3S)_2$ which shows the expected EPR signal; it forms complexes through the sulfur atoms with divalent metal ions (Cu, Mn, Fe) which, surprisingly, are all diamagnetic (31).

The following complexes of the highly substituted cyclopentadienyl C_5Me_4Et were prepared: $Cp_2'V$, $Cp_2'VBr$, and $Cp_2'V-CEC-M$ (M = mesityl). The last is stable to > 100°, in sharp contrast to unsubstituted Cp_2VR analogs. A crystal structure (V-C = 2.03 Å) and ¹H NMR spectrum were reported; the latter shows substantial delocalization of unpaired electrons onto the alkynyl ligand (32). Reaction of $Cp_2VCH_2SiMe_3$ with non-polar hydrogen compounds HX (X = SnEt₃, N(SiMe₃)₂, SR, SGeR₃) gives Cp_2VX plus $SiMe_4$ (33). Mesityllithium displaces Cp from vanadocene, giving first $CpV(mesityl)_2(THF)_2$ and, with a larger excess, known $V(mesityl)_4(THF)_4$ (34).

Full papers on (C,N)-chelating alkyl complexes of vanadium, communicated last year, have appeared; these include $Cp_2V(CH_2C_6H_4 - \underline{O}-NMe_2)$, $Cp_2V(C_6H_4-\underline{O}-CH_2NMe_2)$ (35) and (dipivaloyImethanato) $V(C_6H_4 - \underline{O}-CH_2NMe_2)_2$ (36). Thermal decomposition of Ta(NEt₂)₅ gives the (ethylimino)ethyl complex Ta(EtNCHMe)(NEt₂)₃ which loses C_2H_4 on further heating to form Ta(NEt)(NEt₂)₃ and reacts with MeNCO to give the insertion product (Et₂N)₃TaCH(Me)N(Et)CONMe (37).

An impressive quantity of chemical and structural work on alkylidene complexes, primarily from the laboratories of Schrock and Churchill, has appeared during the past year. Full papers report details on two previously described systems. For M(neopentyl)₃-(neopentylidene), the Nb complex is considerably less stable than Ta but appears by NMR to be completely analogous. The nucleophilic character of the alkylidene ligand is manifested in reactions with acyl chlorides and nitriles. H-D exchange between the alkyl and alkylidene groups can be observed at 75°. The mechanism of formation from TaR₃Cl₂ and LiR is not completely clear but does not appear to go through a symmetric TaR₅ intermediate, loss of H by direct abstraction from R by some basic species was preferred over an α -elimination route (38). The methylene complex Cp₂Ta(CH₂)Me was obtained by methyl abstraction from Cp₂TaMe₃ by Ph₃C⁺ (labelling studies indicate the central Me is removed selectively) followed by deprotonation (kinetic isotope effect ~ 3.4). The methylene group is also nucleophilic, forming an adduct with AlMe₃ and displacing halide from RX. The product of thermal decomposition is $Cp_2TaMe(C_2H_4)$, which appear to arise <u>via</u> a dimeric, doubly methylene-bridged intermediate; reaction with the phosphorus ylide Me₃PCH₂ gives the same product (39).

A group of substituted analogs of the methylene complex, Cp_2MX -(alkylidene), have been prepared, where X = halide or alkyl; alkylidene = PhCH, Me₃CCH or Me₃SiCH. In all cases (including also CH₂) NMR indicates that the alkylidene group is perpendicular to the CMX plane, with a barrier to rotation of 16 kcal/mol or higher (40). A related preparation of $Cp_2M(CH_2SiMe_3)$ (CHSiMe₃) was also reported by another group (41). Crystal structures for Cp_2Ta- (CH₂Ph)(CHPh) (40) and $Cp_2TaCl(CHCMe_3)$ (42) were reported. The latter is of particular interest: the Ta-C-C angle in the neopentylidene group is surprisingly obtuse (150.4^O); it was suggested that this may signal relatively facile deformation in such groups which could be relevant to their role in olefin metathesis. Also, the alkylidene is not quite perpendicular to the CTaCl plane (dihedral angle 79.7^O), probably for steric reasons; the barrier to rotation is lower than in the other complexes of this class.

New developments include the synthesis of alkylidyne and bis(alkylidene) complexes. Reaction of CpTaCl₂(CHCMe₃) with PMe₃ and Ph3PCH2 (or with LiCH2CMe3 followed by PMe3) gives the neopentylidyne species CpTaCl(CCMe₃)(PMe₃)₂; analogs with C₅Me₅ and with benzylidyne were also prepared. The crystal structure of (C_5Me_5) TaCl(CPh)(PMe₃)₂ shows a TaEC distance of 1.85 Å (about 0.2 A shorter than alkylidene distances) and a TaCC angle of 172°. The α carbon of the alkylidyne group has a extreme downfield shift (~ 350 ppm) in the ¹³C NMR spectrum (43). Treatment of Ta(CH2CMe3)3(CHCMe3) with PMe3 gives loss of neopentane and the bis(neopentylidene) complex Ta(CH₂CMe₃)(CHCMe₃)₂(PMe₃)₂; also prepared were TaX(CHCMe₃)₂(PMe₃)₂, X = Cl or alkyl. Reaction of CpTaCl(CCMe₃)(PMe₃) with Mg(CH₂CMe₃) gives CpTa(CHCMe₃) (PMe₃) rather than an alkyl-alkylidyne complex (44). A crystal . structure for Ta(mesityl)(CHCMe3)2(PMe3)2 shows trigonal bipyramidal geometry with axial PMe3's; interestingly, the alkylidene groups are quite different, one with Ta-C = 1.93 Å and $\angle TaCC = 169^{\circ}$; the other with Ta-C = 1.955 Å and $4 \text{ TaCC} = 154^{\circ}$ (45).

As noted last year, $CpTaCl_2(CHCMe_3)$ with olefins gives metallocycles; e.g., propylene gives $CpCl_2Ta(CH_2CHMeCHMeCH_2)$ (plus Me₃CCH₂CMeCH₂). The metallocycle decomposes at 35⁰ to 2,3-dimethylbut-l-ene; with excess propylene the latter is obtained catalytically. This is a potentially significant method for dimerization of olefins since metal hydride intermediates are apparently not involved; hence much less isomerization is observed than in other systems (46).

Reaction of TaCl₅ with Me_3SiCH_2Li gives mostly Me_4Si ; it is presumed alkylidene complex formation is involved (47). In a study of aminoalkylidene complexes, $CpV(CO)_3(CHNMe_2)$ was prepared from $CpV(CO)_3^{2-}$ and $Me_2NCHCl^+cl^-$ (48).

CYCLOPENTADIENYL COMPLEXES

Studies on metallocenes which included Cp_2V reported spectral and magnetic properties (49); determination of heat capacity over 4.5-300 K (50); and examination of the ¹³C NMR isotope shift in paramagnetic $(C_5D_5)_2M$ complexes (51). The ¹H and ¹³C NMR of paramagnetic Cp_2VC1 (and $Cp_2'VC1$) have been examined; both ring and side-chain signals are reasonably sharp. The temperature dependence of chemical shifts follows the Curie law, indicating these 16 electron species do not have any tendency to dimerize (52).

 $TaCl_2(dmpe)_2$ reacts with NaCp to give, at room temperature, CpTaCl(dmpe)_2⁺Cl⁻; at higher temperatures, $Cp_2Ta(dmpe)^+Cl^-$ is obtained. Yields are only ~ 50%, suggesting a disproportionation in going from Ta(II) to Ta(III); the crystal structure of the latter shows a normal Cp_2MX_2 geometry (53). Cp_2TaX_2 can be prepared in 85% yield from TaX₅ and Bu₃SnCp; reaction with Vitride gives Cp_2TaH_3 . This in turn reacts with BuLi to give an uncharacterized, orange crystalline product thought to contain Ta-Li bonding; it reacts with PhCH₂Cl to form $Cp_2TaCl(CH_2Ph)$ (54).

A variety of substituted Cp complexes Cp₂'NbCl₂ have been prepared and examined by EPR (55). They can be converted to Cp₂'NbOCl by treatment with DMSO, boiling glyme, or concentrated HCl followed by NaHCO₃. Mixed species Cp'Cp"NbOCl can be prepared and separated chromatographically, for continued studies (see 1975 survey) on these chiral systems (56).

Several intermetallic complexes have been reported: in addition to the Nb-Fe complex surveyed above, Cp_2NbBH_4 reacts with $\text{CpMo(CO)}_3^{\text{Me}}$ to give $\text{Cp}_2\text{NbMo(CO)}_3\text{Cp}$; based on spectroscopic evidence a structure with one terminal CO (on Mo), one normal bridging CO and one 4electron bridging CO was suggested (57). Cp_2VCl_2 plus NaCo(CO)_4 gives $\text{CpVCo}_3(\text{CO})_9$, characterized by IR and MS, apparently a "vanadylidyne" - $\text{Co}_3(\text{CO})_9$ cluster (58). Reaction of Cp_2NbCl_2 with RSH followed by MCl₂ gives an already-known type of complex, $\text{Cp}_2\text{Nb}(\mu-\text{SR})_2\text{MCl}_2$ (M = Ni, Cu, Mn) (59). Cp_2NbMe_2 reacts with S_8 to form $Cp_2NbMe(S_2)$ and with CS_2 (photochemically) to give $Cp_2NbMe(CS_2)$ (60). Addition of PhSH to vanadocene gives Cp_2VSPh (61). Preparative details for previously communicated $Cp_2V(NN(SiMe_3)_2)$ have been reported (62). Treatment of Cp_2NbBH_4 with Me_3CCO_2H gives, successively, diamagnetic $Cp_2Nb(O_2CCMe_3)$, paramagnetic blue $Cp_2Nb(O_2CCMe_3)_2$, $Nb(O_2CCMe_3)_4$ and $Nb(O_2CCMe_3)_5$; no bridged $M_2(O_2CR)_4$ species of the type known for vanadium were detected (63). Reaction of NaCp (or indenylsodium) with $NbCl_3(SR)_2$ and $NbCl_2(OR)_3$ gives, respectively, $Cp_3Nb(SR)_2$ (64) and $Cp_2Nb(OR)_3$ (65). Cp_2NbX_2 where X is a pseudohalide (CN, NCS, NCO, N_3) have been prepared (66). Cp_2VCl_2 plus Cd(GeEt_3)_2 gives a product of formula $Cp_2VCl_2 \cdot Cd(GeEt_3)_2$ and unknown structure (67).

OTHER *π***-BONDED** COMPLEXES

Reduction of Cp_2NbCl_2 with sodium amalgam in the presence of unsaturated compounds $CF_3C\equiv CF_3$, $CH_3C\equiv CH$ and cyclopropene gives Cp_2NbCl (olefin or acetylene); protonolysis of the last affords cyclopropane (16). Reaction of Cp_2TaCl_2 with RMgCl (where R has a β -hydrogen) gives Cp_2TaH (olefin), for propene, butene, pentene and cyclopentene; mixtures of isomers are obtained in some cases (68). VCl_4 forms poorly characterized adducts with olefins which appear to contain V(III); some oligomerizaton, isomerization, chlorination and metathesis products were detected (69). Further studies on the reduction of acetylene by $V(OH)_2$ -Mg(OH)₂ gel were reported (70). An ethylene-propylene copolymerization catalyst was obtained from $VOCl_3-R_3Al$ (71). TaS₂ and intercalates thereof convert cyclohexene to benzene, methylcyclopentane and methylcyclopentene (72).

Reaction of V(CO)₄(LL)⁻ with substituted allyl halides gave a number of (allyl)V(CO)₃(LL) complexes, which were studied by ¹H, ¹³C and ³¹P NMR (73). HV(CO)₄(LL) plus isoprene gives mostly $(n^3-3,3-dimethylallyl)V(CO)_3$ (LL) in addition to other isomers and V(CO)₄(LL) (74). Successive treatment of NbCl₅ with C₈H₈²⁻ and NaCp (or of Cp₂NbCl₂ with C₈H₈ and iPrMgCl) gives Cp₂Nb(C₈H₈), thought to have an n²-cyclooctatetraene; NaBH₄ converts it to Cp₂Nb(n³-C₈H₉), reported last year (75). Cp₂Nb(C₉H₉) (from Cp₂NbCl₂ and C₉H₉Li) is also believed to have an allylic, n³-C₉H₉ ligand (76).

Photolysis of CpV(CO)₄ plus photo- α -pyrone yields CpV(CO)₂(C₄H₄), the first unsubstituted cyclobutadiene complex in this group (77). Metal vapor synthesis methods have been used to prepare V(arene)₂ (toluene, 1-methylnaphthalene) (78) and Nb(arene)₂ (benzene,

toluene, mesitylene) (79). For the latter, ESR, IR and photoelectron spectroscopy all indicate a low spin, Nb(0) sandwich structure. The organic byproducts in the Friedel-Crafts preparation of bis(ethylbenzene)vanadium do not appear to form via any organovanadium intermediate (80). Cyclic voltammetric studies on bis(methylborinato)vanadium, (MeBC₅H₅)₂V, show an irreversible \cdot oxidation at +0.76 V and a reversible reduction at -1.34 V (vs. SCE); the analogous processes in Cp₂V occur at potentials more negative by ~ 1.5 V (81).

An SCF-type calculation on CpM(C7H7) complexes has been reported for V, among others (82).

REFERENCES

- 1 T. J. Barton, R. Grinter and A. J. Thomson, J. Chem. Soc. Dalton Trans., (1978)608. 2 S. D. Brown and G. L. Gard, Inorg. Chem., 17(1978)1363.
- 3 R. Talay and D. Rehder, Chem. Ber., 111(1978)1978 .
- 4 W. R. W. Roose, D. Rehder, H. Lüders and K. H. Theopold, J. Organomet. Chem., 157(1978)311.
- 5 U. Puttfarcken and D. Rehder, J. Organomet. Chem. 157(1978)321.
- 6 D. Rehder, I. Müller and J. Kopf, J. Inorg. Nucl. Chem., 40(1978)1013.
- 7 H. Vahrenkamp, Chem. Ber., 111(1978)3472.
- 8 R. J. Kinney, W. D. Jones and R. G. Bergman, J. Am. Chem. Soc., 100(1978)635.
- 9 R. J. Kinney, W. D. Jones and R. G. Bergman, J. Am. Chem. Soc., 100(1978)7902.
- 10 T. J. McNeese, S. S. Wreford and B. M. Foxman, J. Chem. Soc., Chem. Commun., (1978)500.
- 11 L. D. Brown, S. Datta, J. K. Kouba, L. K. Smith and S. S. Wreford, Inorg. Chem., 17(1978)729.
- 12 R. S. Burt and G. J. Leigh, J. Organomet. Chem., 148(1978)C19.
- 13 F. A. Cotton, L. Kruczynski and B. A. Frenz, J. Organomet. Chem., 160(1978)93.
- 14 C. Moise, N. El Murr, M. Riveccié and J. Tirouflet, C. R. Acad. Sci., Ser. C, 287(1978)329.
- 15 E. E. H. Otto and H. H. Brintzinger, J. Organomet. Chem., 148 (1978) 29.
- 16 S. Fredericks and J. L. Thomas, J. Am. Chem. Soc., 100(1978)350.
- 17 J. A. Labinger, K. S. Wong and W. R. Scheidt, J. Am. Chem. Soc., 100(1978)3254.
- 18 J. P. Wilshire and D. T. Sawyer, J. Am. Chem. Soc., 100(1978)3972.
- 19 P. Sobota and B. Jezowska-Trzebiatowska, Coord. Chem. Rev., 26(1978)77.
- 20 K. Jacob, Z. Chem., 18(1978)227.
- 21 K. Jacob, K.-H. Thiele and V. Dimitrov, Z. Anorg. Allg. Chem., 447(1978)136.
- 22 G. K. Barker, M. F. Lappert and J. A. K. Howard, J. Chem. Soc., Dalton Trans., (1978)734.
- 23 B. K. Bower, Ger. Patent 2,812,393; Chem. Abstr., 90(1979)23259. 24 T. Glowiak, R. Grobelny, B. Jezowska-Trzebiatowska, G. Kreisel,
- W. Seidel and E. Uhlis, J. Organomet. Chem., 155(1978)39.
- 25 G. Jamieson and W. E. Lindell, Inorg. Chim. Acta, 28(1978)113.
- 26 R. C. Poller and D. Silver, J. Organomet. Chem., 157(1978)247.
- 27 J. C. Green, D. R. Lloyd, L. Galyer, K. Mertis and G. Wilkinson, J. Chem. Soc., Dalton Trans., (1978)1403.

184

28 V. Malatesta, K. U. Ingold and R. R. Schrock, J. Organomet. Chem., 152(1978)C53. 29 A. G. Evans, J. C. Evans, D. J. C. Espley, P. H. Morgan and J. Mortimer, J. Chem. Soc., Dalton Trans., (1978)57. 30 G. A. Razuvaev, S. P. Korneva, L. I. Vyshinskaya, V. P. Marin and V. K. Cherkasov, Izv. Akad. Nauk SSSR, Ser. Khim., (1978)700. 31 Yu. A. Oldekop and V. A. Knizhnikov, Dokl. Akad. Nauk SSSR, 237(1977)601. 32 F. H. Köhler, W. Prössdorf, U. Schubert and D. Neugebauer, Angew. Chem., 90(1978)912. 33 G. A. Razuvaev, V. N. Latyaeva, E. N. Gladyshev, E. V. Krasilnikova, A. N. Lineva and A. P. Kozina, Inorg. Chim. Acta, 31(1978)L357. 34 W. Seidel and P. Scholz, Z. Chem., 18(1978)106. 35 L. E. Manzer, J. Am. Chem. Soc., 100(1978)8069. 35 L. E. Manzer, J. Kan, Chem. 100(1978)1552.
36 L. E. Manzer, Inorg. Chem., 17(1978)1552.
37 Y. Takahashi, N. Onoyama, Y. Ishikawa, S. Motojima and K. Sugiyama, Chem. Lett., (1978)525.
38 R. R. Schrock and J. D. Fellmann, J. Am. Chem. Soc., 100(1978)3359.
39 R. R. Schrock and P. R. Sharp, J. Am. Chem. Soc., 100(1978)2389. 40 R. R. Schrock, L. W. Messerle, C. D. Wood and L. J. Guggenberger, J. Am. Chem. Soc., 100(1978)3793. 41 M. F. Lappert and C. R. C. Milne, J. Chem. Soc., Chem. Commun., (1978)925. 42 M. R. Churchill, F. J. Hollander and R. R. Schrock, J. Am. Chem. Soc., 100(1978)647; M. R. Churchill and F. J. Hollander, Inorg. Chem., 17(1978)1957. 43 S. J. McLain, C. D. Wood, L. W. Messerle, R. R. Schrock, F. J. Hollander, W. J. Young and M. R. Churchill, J. Am. Chem. Soc., 100(1978)5962. 44 J. D. Fellman, G. A. Rupprecht, C. D. Wood and R. R. Schrock, J. Am. Chem. Soc., 100(1978)5964. 45 M. R. Churchill and W. J. Young, J. Chem. Soc., Chem. Commun., (1978)1048.46 S. J. McLain and R. R. Schrock, J. Am. Chem. Soc., 100(1978)1315. 47 I. L. Kershenbaum, L. N. Grebenyak, I. A. Oreshkin, B. A. Dolgoplosk and E. I. Tinyakova, Dokl. Akad. Nauk SSR, 238 (1978) 359. 48 A. J. Hartshorn, M. F. Lappert and K. Turner, J. Chem. Soc., Dalton Trans., (1978)348. 49 K. R. Gordon and K. D. Warren, Inorg. Chem., 17(1978)987. 50 I. B. Rabinovich, V. P. Nistratov, M. S. Sheiman and G. B. Burchalova, J. Chem. Thermodyn., 10(1978)523. 51 F. H. Köhler and W. Prössdorf, J. Am. Chem. Soc., 100(1978)5970. 52 F. H. Köhler and W. Prössdorf, Chem. Ber., 111(1978)3464. 53 B. M. Foxman, T. J. McNeese and S. S. Wreford, Inorg. Chem., 17(1978)2311. 54 M. L. H. Green and J. J. E. Moreau, J. Organomet. Chem., 161(1978)C25. 55 R. Broussier, H. Normand and B. Gautheron, J. Organomet. Chem., 155(1978)337. 56 R. Broussier, H. Normand and B. Gautheron, J. Organomet. Chem., 155 (1978) 347. 57 A. A. Pasynskii, Yu. V. Skripkin, K. M. Suvarova, O. N. Kuzmicheva and V. T. Kalinnikov, Izv. Akad. Nauk SSSR, Ser. Khim., (1978)1226. 58 H. J. Haustein and K. E. Schwarzhans, Z. Naturforsch., 33b(1978) 1108. 59 Yu. A. Oldekop and V. A. Knizhnikov, Vestsi Akad. Nauk BSSR, Ser. Khim. Nauk, (1978)90; Chem. Abstr., 89(1978)197669. 60 J. Amadrut, J. E. Guerchais and J. Sala-Pala, J. Organomet. Chem., 157(1978)Cl0.

185

- 61 A. A. Pasynskii, I. L. Eremenko, Yu. V. Skripkin and V. T. Kalinnikov, Koord. Khim., 3(1977)1511; Chem. Abstr., 88(1978)23091.
- 62 N. Wiberg, H.-W. Häring, G. Huttner and P. Friedrich, Chem. Ber., 111(1978)2708.
- 63 A. A. Pasynskii, Yu. V. Skripkin and V. T. Kalinnikov, J. Organomet. Chem., 150(1978)51.
- 64 S. N. Nigam, M. K. Rastogi and R. K. Mutani, Indian J. Chem., 16A(1978)361; Chem. Abstr., 89(1978)147006.
- 65 S. N. Nigam, M. K. Rastogi and R. K. Multani, Indian J. Chem., 16A(1978)362; Chem. Abstr., 89(1978)147007.
 66 P. K. Vij, M. S. Bhalla and R. K. Multani, J. Chin. Chem. Soc.
- 66 P. K. Vij, M. S. Bhalla and R. K. Multani, J. Chin. Chem. Soc. (Taipei), 25(1978)95; Chem. Abstr., 90(1979)23206.
 67 L. I. Vyshinskaya, S. P. Korneva and V. K. Cherkasov, Izv. Akad.
- 67 L. I. Vyshinskaya, S. P. Korneva and V. K. Cherkasov, Izv. Akad. Nauk SSSR, Ser. Khim., (1978)1405.
- 68 A. H. Klazinga and J. H. Teuben, J. Organomet. Chem., 157(1978)413.
- 69 D. R. Burfield, J. Organomet. Chem., 150(1978)321.
- 70 S. I. Jones, M. R. Palmer, J. G. Palmer, J. M. Doemeny and G. N. Schrauzer, J. Am. Chem. Soc., 100(1978)2113.
- 71 I. A. Livshits, E. G. Erenburg, E. O. Osipchuk, L. V. Pavlova, E. R. Gershtein, S. P. Eudokimova and I. Ya. Poddubnyi, Vysokomol. Soedin., Ser. A, 19(1977)2494; Chem. Abstr., 88(1978)23486
- 72 Y. Saito, N. Yamazoe and T. Seiyama, Chem. Lett., (1978)839.
- 73 U. Franke and E. Weiss, J. Organomet. Chem., 153(1978)39.
- 74 U. Franke and E. Weiss, J. Organomet. Chem., 152(1978)C19.
- 75 C. P. Verkade, A. Westerhof and H. J. de Liefde Meijer, J. Organomet. Chem., 154(1978)317.
- 76 A. Westerhof and H. J. de Liefde Meijer, J. Organomet. Chem., 149(1978)321.
- 77 M. D. Rausch and A. V. Grossi, J. Chem. Soc., Chem. Commun., (1978)401.
- 78 P. N. Hawker, E. P. Kündig and P. L. Timms, J. Chem. Soc., Chem. Commun., (1978)730.
- 79 F. G. N. Cloke, M. L. H. Green and D. H. Price, J. Chem. Soc., Chem. Commun., (1978)431.
- 80 A. D. Zorin, V. A. Umilin, V. K. Vanchagova, P. E. Gaivoronskii and O. F. Rachkova, Zh. Obshch. Khim., 48(1978)1092.
- 81 U. Koelle, J. Organomet. Chem., 157(1978)327.
- 82 J.D. Zeinstra and W. C. Nieuwpoort, Inorg. Chim. Acta, 30(1978)103.